Statistical radar imaging of diffuse and specular targets using an expectation-maximization algorithm

Aaron D. Lanterman (lanterma@ifp.wustl.edu)

Coordinated Science Laboratory
Univ. of Illinois
1308 W. Main
Urbana, IL 61801

This work was supported by DARPA Contract F49620-98-1-0498, administered by AFOSR. http://www.ifp.uiuc.edu/~lanterma/darpa

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 21 APR 2000		2. REPORT TYPE		3. DATES COVE 00-00-2000	red to 00-00-2000	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER					
	naging of diffuse and	sing an	5b. GRANT NUMBER			
expectation-maxim		5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)				5d. PROJECT NUMBER		
		5e. TASK NUMBER				
			5f. WORK UNIT NUMBER			
	ZATION NAME(S) AND AD is at Urbana-Cham a,IL,61801	` '	Science	8. PERFORMING REPORT NUMB	GORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited				
13. SUPPLEMENTARY NO presented at SPIE	otes Aerosense 2000, Or l	lando, FL, April 200	00. U.S. Governm	ent or Feder	al Rights License	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 16	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Models for Received Radar Data

- Received data $\mathbf{r} = \mathbf{\Gamma}^H \mathbf{c} + \mathbf{w}$, where
 - --- \mathbf{c} = complex target reflectance
 - Γ = linear observation mechanism
 - $---\mathbf{w} \sim CN(0, N_0 I)$
- Examples of Γ :
 - Simple range profiling: Samples of transmitted waveform (representing convolution)
 - Delay-doppler imaging: Transmitted waveform multiplied by sinusoids
 - Tomographic imaging: Transmitted waveform with partial Radon transform
- ullet In target detection, $oldsymbol{c}$ is often treated as random vector. In target imaging, $oldsymbol{c}$ is more often treated as an unknown deterministic parameter. Here we explore random models for $oldsymbol{c}$ for imaging purposes.

Models for Target Reflectance

From Shapiro:

- Diffuse/speckle: $\mathbf{c}_d \sim CN(0, \Sigma)$
 - --- Σ is a diagonal covariance
 - $--- \mathbf{s} = diag(\mathbf{\Sigma})$ called the scattering function
 - Goal: estimate **s**
- Specular/glint: $\mathbf{c}_s = \mathbf{b} \times \exp[j\theta]$
 - $--\theta \sim \text{i.i.d.}$ uniform over $[0, 2\pi)$
 - **b** is a deterministic glint reflection coefficient
 - --- × is elementwise multiplication
 - Goal: estimate **b**
- Mixed model: $\mathbf{c} = \mathbf{c}_d + \mathbf{c}_s$
 - Goal: estimate **s** and **b**
 - Tends to be overparameterized

EM Algorithm for Diffuse Imaging

- For diffuse imaging, $\mathbf{r} \sim CN(0, \mathbf{\Gamma}^H \mathbf{\Sigma} \mathbf{\Gamma} + N_0 \mathbf{I})$, yielding a structured covariance estimation problem
- No obvious closed-form formula for ML estimate
- Iterative EM algorithm by Snyder-O'Sullivan-Miller:

$$\sigma_i^{new} = \sigma_i^{old} - (\sigma_i^{old})^2 [\mathbf{\Gamma} \mathbf{K}^{-1} \mathbf{\Gamma}^H - \mathbf{\Gamma} \mathbf{K}^{-1} \mathbf{r} \mathbf{r}^H \mathbf{K}^{-1} \mathbf{\Gamma}^H]_{ii},$$
where

$$\mathbf{K} = \mathbf{\Gamma}^H \mathbf{\Sigma}^{old} \mathbf{\Gamma} + N_0 \mathbf{I}$$

- Enjoys usual properties of EM algorithms
 - Likelihood increases at each iteration
 - Iterates guaranteed to be nonnegative

What About Specular Imaging?

- ullet Specular ${f r}$ is vastly more complicated
 - Not aware of a closed form for the density on ${f r}$
- ullet If the columns of $oldsymbol{\Gamma}$ have a sufficient non-zero entries:
 - --- **r** consists of sums of indep. 0-mean random variables
 - By CLT, marginals on \mathbf{r} approx. 0-mean Gaussian
 - **r** "almost Gaussian" in the spirit of Mallows
- Motivates trying the diffuse EM algorithm on the specular case

Phantoms for Simulations

• Three point scatterers:

•

• Rotating sphere:

Transmitted Waveform

• Specular realization:

• Autocorrelation:

Data from Three Point Scatterer

• Data from three point scatterer:

Results for Three Point Scatterer

• Matched filter output:

• At 1, 5, 10 and 20 EM iterations:

Data for the Sphere

• Two diffuse realizations:

• Two specular realizations:

Results for Diffuse Sphere

Results for Specular Sphere

Regularization Techniques

- Grenander's Method of Sieves
 - B-spline basis for f (Moulin 92)
 - Wavelet basis for $\log(f)$ (Moulin 93)
- Penalized likelihood methods
 - Subtract penalty from likelihood

$$P(r|f) = L(r|f) - \alpha \Phi(f)$$

— Good's roughness penalty:

$$\Phi_G(f) = \int \left[\frac{d}{dx}\sqrt{f(x)}\right]^2 dx$$

- Good's is equivalent to O'Sullivan's I-divergence penalty
- Silverman's roughness penalty:

$$\Phi_S(f) = \int \left[\frac{d}{dx} \log f(x)\right]^2 dx$$

- Simple modification of EM algorithm produces penalized likelihood estimates; amounts to nonlinearly smoothing the result of the maximization step at each iteration
- Admits a Bayesian interpretation

Expectation-Maximization-Smoothing Algorithms

- Suggested by Silverman for emission tomography
- Try different kinds of ad hoc smoothing steps
- A particular choice of smoothing may not correspond to any particular penalized likelihood method
- Good performance shown in emission tomography
- However, it's hard to prove whether such algorithms converge, and even harder to show what they converge to

Directions for Future Work

- Implementation and comparison of various regularization techniques
- Current execution time of MATLAB implementation on Sun Enterprise 3500:

Image size	Total time	Time for inverse
20×20	15 seconds	6 seconds
32×32	8 minutes	4 minutes
40×40	32 minutes	13 minutes

- Improve computation time
 - Must find fast way of doing matrix inverse (or avoiding an explicit inverse altogether)
 - Speed up multiplies by Γ
 - Fast EM Variants (SAGE, etc.)
- Statistical formulation provides criteria for radar waveform design (via Cramer-Rao bounds, etc.)
- Other applications
 - Radar astronomy
 - Direction finding?

Bibliography

- J. Shapiro, B.A. Capron, and R.C. Harney, "Imaging and target detection with a heterodyne-reception optical radar," *Applied Optics*, 20(19):3292-3313, 1981.
- D.L. Snyder, J.A. O'Sullivan, and M.I. Miller, "The use of maximum-likelihood estimation for forming images of diffuse radar-targets from delay-doppler data," *IEEE Trans. IT*, 35(3):536-548, 1989.
- C.L. Mallows, "Linear processes are nearly Gaussian", *J. of Applied Prob.*, 4:313-329, 1968.
- P. Moulin, J.A. O'Sullivan, and D.L. Snyder, "A method of sieves for multiresolution spectrum estimation and radar imaging," *IEEE Trans. IT*, 38(2):801-813, 1992.
- P. Moulin, "A wavelet regularization method for diffuse radar-target and speckle-noise reduction," *J. of Mathematical Imaging and Vision*, 3(1):123-134, 1993.
- J.A. O'Sullivan, "Roughness penalties on finite domains," *IEEE Trans. Image Proc.*, 4(9):1258-1268, 1995.
- B.W. Silverman, "On the estimation of a probability density function by the maximum penalized likelihood method," *Annals of Stat.*, 10(3):795-810, 1982.
- B.W. Silverman, M.C. Jones, J.D. Wilson, and D.W. Nychka. "A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography (with discussion)," *J. of the Royal Stat. Soc. B*, 52(2):271-324, 1990.